Accurate Attribution and Seasonal Prediction of Climatic Anomalies Using Causal Inference Theory

نویسندگان

چکیده

Abstract Using features based on correlation or noncausal dependence metrics can lead to false conclusions. However, recent research has shown that applying causal inference theory in conjunction with Bayesian networks large-sample-size data accurately attribute synoptic anomalies. Focusing the East Asian summer monsoon (EASM), this study adopts a approach model averaging investigate causation of interannual climate variability. We EASM variability five winter phenomena; our result shows eastern Pacific El Niño–Southern Oscillation largest effect. also show precursors are interpretable terms physics. linear regression, these predict one season ahead, outperforming correlation-based empirical models and three models. This even without substantial human intervention, laymen implement causes climatic anomalies construct reliable for prediction. Significance Statement use redesign attribution procedure fundamentally adjust commonly used data. Our exhaustively reveal little which is impossible studies. According attribution, better predictive performance than Therefore, will tremendously help both meteorologists (e.g., stakeholders policymakers) phenomena their causes. recommend it become standard practice studies operational

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Anomalies Prediction Using the Bayesian Theory

The industry world uses machines and plants that are increasingly powerful and complex. The requirements of high safety, the reduction of the exploitation costs, and the control of the equipment availability give to maintenance a dominating role. The industrialists attach a great importance to the conditional maintenance of the revolving machines that use primarily the vibrations of their rotor...

متن کامل

Theory-Based Causal Inference

People routinely make sophisticated causal inferences unconsciously, effortlessly, and from very little data – often from just one or a few observations. We argue that these inferences can be explained as Bayesian computations over a hypothesis space of causal graphical models, shaped by strong top-down prior knowledge in the form of intuitive theories. We present two case studies of our approa...

متن کامل

attribution theory and personality traits among efl learners

هدف از این تحقیق یافتن ارتباط بین نحوه نگرش زبان آموزان به موفقیت و شکستشان و نوع شخصیت آنها است. 216 زبان آموز، 111 پسر و 105 دختر، در سطح متوسط که در آموزشگاه زبان انگلیسی شکوه مشغول به تحصیل بودند در این پژوهش شرکت کرده اند. شرکت کننده ها دو پرسشنامه neo-ffi و atfll را تکمیل کرده اند. نتیجه نشان داد که: احساسات با توافق پذیری و وظیفه شناسی ارتباط مثبت و با روان نژندی ارتباط منفی دارد. تصور ا...

15 صفحه اول

Causal inference using invariant prediction: identification and confidence intervals

What is the difference of a prediction that is made with a causal model and a non-causal model? Suppose we intervene on the predictor variables or change the whole environment. The predictions from a causal model will in general work as well under interventions as for observational data. In contrast, predictions from a non-causal model can potentially be very wrong if we actively intervene on v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Climate

سال: 2022

ISSN: ['1520-0442', '0894-8755']

DOI: https://doi.org/10.1175/jcli-d-22-0033.1